Efficient Enzymatic in Situ Saccharification of Cellulose in Aqueous-ionic Liquid Media by Microwave Pretreatment

نویسندگان

  • Lu Li
  • Shi-Tao Yu
  • Fu-Sheng Liu
  • Cong-Xia Xie
چکیده

Several representative ionic liquids (ILs) were synthesized, and [Emim]OAc was chosen as environment-friendly solvent for enzymatic in situ saccharification in view of its biocompatibility with both natural and microcrystalline cellulose, as well as its enzymatic activity. With the microwave pretreatment of natural and microcrystalline cellulose, directly enhancing the in situ enzymatic saccharification, the rate was compared versus an untreated control by the detection of dinitrosalicylic acid (DNS). It is suggested that the molecular structure of cellulose in the process of pretreatment was changed, e.g. intramolecular hydrogen bonds were broken (detected by FT-IR), and the crystallinity (monitored by SEM and XRD) changed significantly from a crystalline to an amorphous pattern. These changes of cellulose led to an increase of reducing sugar conversion during cellulose enzymatic hydrolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aqueous Ionic Liquids and Deep Eutectic Solvents for Cellulosic Biomass Pretreatment and Saccharification.

Ionic liquids (ILs) have proven effective solvents for pretreating lignocellulose, leading to the fast saccharification of cellulose and hemicellulose. However, the high current cost of most ILs remains a major barrier to commercializing this recent approach at a practical scale. As a strategic detour, aqueous solutions of ILs are also being explored as less costly alternatives to neat ILs for ...

متن کامل

Pretreatment and enzymatic saccharification of lignocellulose: Formation and effects of pseudolignin

Production of advanced biofuels, green chemicals, and bio-based materials from renewable lignocellulosic biomass would contribute to decreased dependence on fossil resources and to sustainable development. The overall aim of the investigations was to explore how preprocessing and pretreatment technologies affected the chemical composition of cellulosic materials and their susceptibility to enzy...

متن کامل

Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification.

The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatment (dissolution and precipitation of cellulose by anti-solvent) switchgrass exhibited reduced cell...

متن کامل

Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step.

Hydrolysis of cellulose to glucose in aqueous media catalyzed by the cellulase enzyme system suffers from slow reaction rates due in large part to the highly crystalline structure of cellulose and inaccessibility of enzyme adsorption sites. In this study, an attempt was made to disrupt the cellulose structure using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride, in a cellulose re...

متن کامل

Comparison of sugar content for ionic liquid pretreated Douglas-fir woodchips and forestry residues

BACKGROUND The development of affordable woody biomass feedstocks represents a significant opportunity in the development of cellulosic biofuels. Primary woodchips produced by forest mills are considered an ideal feedstock, but the prices they command on the market are currently too expensive for biorefineries. In comparison, forestry residues represent a potential low-cost input but are consid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011